May 22, 2014

Here come the rice-grain-sized brain implants: Stanford discovers way of beaming power to microimplants deep inside your body

Stanford's mid-field wirelessly powered microimplant, the size of a grain of riceStanford electrical engineer and biological implant mastermind, Ada Poon, has discovered a way of wirelessly transmitting power to tiny, rice-grain-sized implants that are deep within the human body. This could well be the breakthrough that finally allows for the creation of smaller pacemakers, body-wide sensor networks, and a new class of “electroceutical” devices that sit deep in the human brain and stimulate neurons directly, providing an alternative for drug-based therapies for depression, Alzheimer’s, and other neurological ailments. There will of course be the potential for elective, transhumanist applications as well.

The key to this discovery is a new method of wirelessly transmitting power, dubbed “mid-field powering.” As the name implies, mid-field power transfer uses radio waves that sit between near-field (tens of gigahertz) and far-field (tens of megahertz). Near-field radiation can penetrate human flesh, but can only effectively transfer power over a short distance (millimeters). Far-field waves can transfer power over longer distances, but are unfortunately scattered or absorbed by human skin. To create mid-field waves, Poon created a patterned antenna (pictured below) that generates special near-field waves. When these special waves hit the skin, they turn into mid-field waves that can then penetrate a few more centimeters of flesh. (For more on how wireless power transfer actually works, read our explainer.)

 


Read more of this article at - http://www.extremetech.com/extreme/182686-here-come-the-rice-grain-sized-brain-implants-stanford-discovers-way-of-beaming-power-to-microimplants-deep-inside-your-body